

Measurement of the Transverse Single Spin Asymmetries for π^0 and Electromagnetic Jets at forward rapidities at STAR

Mriganka Mouli Mondal (for the STAR Collaboration)

Texas A&M University

<u>Outline</u>

- ♦ Forward Meson Spectrometer in the STAR experiment
- ♦ EM-Jets measured from FMS photons
- \Leftrightarrow A_N at \forall s = 500 GeV and its correlation with midrapidity jets

TSSA - 2 theoretical frameworks

Spin-dependent transverse momentum dependent (TMD) function S_{τ} .(Pxk_{τ})

Brodsky, Hwang, Schmidt, 02 Collins, 02, Ji, Belitsky, Yuan, 02

+ Collins fragmentation functions

Twist-3 quark-gluon correlations

Efremov & Teryaev: 1982 & 1984

Qiu & Sterman: 1991 & 1999

+ Twist three fragmentation functions

Transverse momentum dependent $Q > Q_T > = \Lambda_{QCD}$ $Q > p_T$

Collinear/
twist-3
Q,Q_T>> Λ_{QCD} p_T~Q

 \rightarrow Q_T/P_T

Need 2 scales
Q² and p_t
Remember pp:
most observables one scale
Exception:
DY, W/Z-production

Need only 1 scale

Q² or p_t

should be of reasonable size should be applicable to most pp observables $A_N(\pi^0/\gamma/\text{jet})$

π⁰ A_N Measurements at Forward Rapidity

Inclusive $\pi 0$ production

$$p_{\uparrow} + p \rightarrow \pi^0 + X$$

Transverse Single Spin Asymmetry

$$A_N \equiv \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

$$x_F = 2p_Z/\sqrt{s}$$

- \Leftrightarrow Rising A_N with X_E
- \diamond A_N nearly independent of \lor s
- ♦ No evidence of fall in A_N with increasing P_T

CIPANP 2012, Steve Heppelmann

Forward ECAL in STAR

Forward Meson Spectrometer (FMS):

- -- Pb glass EM calorimeter covering 2.5< η <4.0
- -- Detect π^0 , η , direct photons and jet-like events in the kinematic region where transverse spin asymmetries are known to be large.

EM-Jet characteristics

Jet algorithm: anti-kt

R-parameter: 0.7

 $p_{T}^{EM-Jet} > 2.0 \text{ GeV/c}$

photons with $p_T > 0.001 \text{ GeV/c}$

Leading EM-Jets:

Multi-photon Jets with highest energy

 $2.8 < \eta^{EM-Jet} < 4.0$

40 GeV < Energy^{EM-Jet} < 100 GeV

yy invariant mass 2-photon EM-jets

 $dE/d(\Delta R)$ distribution of EM-Jets

- \diamond 2-photon jets are mostly π^0
- ♦ Events with more than 2 photons show jet-like. energy flow

A_N vs. EM-Jet Energy

π⁰-Jets – 2γ-EM-Jets with $m_{\gamma\gamma}$ < 0.3 $Z_{\gamma\gamma}$ < 0.8

EM-Jets – with no. photons >2

 \Rightarrow Isolated π^{0} 's have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)

https://indico.triumf.ca/contributionDisplay.pycontribId=349&sessionId=44&confId=1383

♦ Asymmetries for jettier events are much smaller

A_N vs. EM-Jet Energy

 \Rightarrow Isolated π^0 's have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)

https://indico.triumf.ca/contributionDisplay.pycontribId=349&sessionId=44&confId=1383

♦ Asymmetries for jettier events are much smaller

A_N for different # photons in EM-Jets

- 1-photon events,
 which include a large
 π⁰ contribution in this analysis, are similar to
 2-photon events
- Three-photon jet-like events have a clear non-zero asymmetry, but substantially smaller than that for isolated π⁰'s
- ♠ A_N for #photons >5 is similar to that #photons = 5

A_N with midrapidity activities

towers (BEMC+EEMC):

anti- k_T , R = 0.7, $p_T^{EM-Jet} > 2.0 \text{ GeV/c}$, -1.0< $\eta^{EM-Jet} < 2.0$

Leading central EM-Jets : Jet with highest p_T

- Case-I : having no central jet
- Case-II: having a central jet

Δφ correlation between forward and central EMJets

Number of photons for forward EMJets:

- ♦ Correlation is stronger for more N photon Jets
- ♦ For higher EMJets energy, correlation grows stronger

A_N for correlated central jets and no central jet cases

 \Rightarrow Asymmetries for the forward isolated π^0 are low when there is a correlated away-side jet.

TMD contributions A_N

γ_{direct} measurements as a test of the twist-3 framework

Observable without fragmentation func. : Drell-Yan, W[±] /Z, jets, direct photons

STAR: pp 200GeV, L = 40/pb, P=60%

Summary

- ♦ EM-jets are reconstructed from photons detected in the FMS at STAR.
- \Leftrightarrow Jets with **isolated** π^0 have large asymmetry.
- → A_N decreases as the event complexity increases(i.e., the "jettiness")
- \Leftrightarrow Isolated π^0 asymmetries are smaller when there is a correlated EM-jet at mid-rapidity.
- \Rightarrow Both of these dependences raise serious question how much of the large forward π^0 A_N comes from 2 \Rightarrow 2 parton scattering (diffractive events?).

STAR forward goals for data taking on 2015

- Direct Photon x-section & A_N at pT>2.0GeV (FMS + Pre-shower)
- PiO A_N Jetty vs Isolated :
 pp vs pA, diffractive vs non-diffractive (Roman Pots)
- Study di-electron channel (J/psi) towards DY

backups

RHIC: the world's first polarized proton collider

For 2011: Average Blue Beam Polarization = 51.6% (Transverse), Luminosity = 22 pb-1

Run-2011 data

p+p Vs = 500 GeV transverse datasets

Jet algorithm: anti-kt

R-parameter: 0.7

 $p_{\tau}^{EM-Jet} > 2.0 \text{ GeV/c}$

FMS photons with $p_T > 0.001$ GeV/c fed into anti-kt

Leading EM-Jets: Multi-photon Jets with highest

energy

EM-Jets used to find asymmetry within 2.8<n^{EM-Jet}<4.0

40 GeV < Energy^{EM-Jet} < 100 GeV

Structure in EM-Jet p_T :

- -- Acceptance non uniformity in small and large tower boundary
- -- Different trigger threshold influence different \boldsymbol{p}_{T} region

A_N from fits

- A_N is calculated from p0 + p1 cos(φ) fits over each fill
 p0 = relative luminosity, p1 = asymmetry
- \Leftrightarrow A_N's are corrected for polarization values from fill to fill
- \diamondsuit Weighted A_N and χ^2/NDF are calculated over entire fills

EM-Jet Energy = 55-57.5 GeV

For 2-photon isolated π^0

Individual point and χ^2/NDF from averages over ~18 fills

- In p+p, Sivers effect is not Dominantly responsible
- In SIDIS Sivers functions are not well constrained in k.

Sivers function has opposite sign from that of $T_{q,F}(x,x)$,

quark-gluon correlation function

$$\begin{split} \overline{A(P, \vec{S}_\perp) + B(P') \rightarrow C(P_h) + X} \\ d\sigma(\vec{S}_\perp) &= H \otimes f_{a/A(3)} \otimes f_{b/B(2)} \otimes D_{C/c(2)} \\ &+ H' \otimes f_{a/A(2)} \otimes f_{b/B(3)} \otimes D_{C/c(2)} \\ &+ H'' \otimes f_{a/A(2)} \otimes f_{b/B(2)} \otimes D_{C/c(3)} \end{split}$$

soft gluon poles (SGPs) and soft fermion poles (SFPs)

- + twist-3 effects in the unpolarized proton
- + twist-3 contribution due to parton fragmentation (two independent FFs.)

PHYSICAL REVIEW D 89, 111501(R) (2014)

using collinear factorization,
$$\mathbf{A}^{\mathrm{Siv}}_{\mathrm{SIDIS}}$$
 + $\mathbf{A}^{\mathrm{Col}}_{\mathrm{SIDIS}}$ + $A^{\cos(2\phi)}_{e^+e^-}$